An Automatic Learning System to Derive Multipole and Local Expansions for the Fast Multipole Method
نویسندگان
چکیده
This paper introduces an automatic learning method based on genetic programming to derive local and multipole expansions required by the Fast Multipole Method (FMM). FMM is a well-known approximation method widely used in the field of computational physics, which was first developed to approximately evaluate the product of particular N × N dense matrices with a vector in O(N log N) operations. Later, it was applied successfully in many scientific fields such as simulation of physical systems, Computer Graphics and Molecular dynamics. However, FMM relies on the analytical expansions of the underlying kernel function defining the interactions between particles, which are not always obvious to derive. This is a major factor limiting the application of the FMM to many interesting problems. Thus, the proposed method here can be regarded as a useful tool helping practitioners to apply FMM to their own problems such as agent-based simulation of large complex systems. The preliminary results of the implemented system are very promising, and so we hope that the proposed method can be applied to other problems in different application domains.
منابع مشابه
A genetic programming based learning system to derive multipole and local expansions for the fast multipole method
This paper introduces an automatic learning algorithm based on genetic programming to derive local and multipole expansions required by the Fast Multipole Method (FMM). FMM is a well-known approximation method widely used in the field of computational physics, which was first developed to approximately evaluate the product of particular N × N dense matrices with a vector in O(N log N) operation...
متن کاملA New Guideline for the Allocation of Multipoles in the Multiple Multipole Method for Two Dimensional Scattering from Dielectrics
A new guideline for proper allocation of multipoles in the multiple multipole method (MMP) is proposed. In an ‘a posteriori’ approach, subspace fitting (SSF) is used to find the best location of multipole expansions for the two dimensional dielectric scattering problem. It is shown that the best location of multipole expansions (regarding their global approximating power) coincides with the med...
متن کاملA Comparative Study of Multipole and Empirical Relations Methods for Effective Index and Dispersion Calculations of Silica-Based Photonic Crystal Fibers
In this paper, we present a solid-core Silica-based photonic crystal fiber (PCF) composed of hexagonal lattice of air-holes and calculate the effective index and chromatic dispersion of PCF for different physical parameters using the empirical relations method (ERM). These results are compared with the data obtained from the conventional multipole method (MPM). Our simulation results reveal tha...
متن کاملA new fast multipole boundary element method for solving large-scale two-dimensional elastostatic problems
A new fast multipole boundary element method (BEM) is presented in this paper for large-scale analysis of two-dimensional (2-D) elastostatic problems based on the direct boundary integral equation (BIE) formulation. In this new formulation, the fundamental solution for 2-D elasticity is written in a complex form using the two complex potential functions in 2-D elasticity. In this way, the multi...
متن کاملThe Fast Multipole Method for Global Illumination
Despite its wide applicability in scientific computing, the linear time fast multipole method (FMM) with provable error bounds has not been used extensively in computer graphics. This paper presents – to our knowledge – the first application of FMM to the problem of global illumination. The light transport kernel is broken into multipole and local expansions and required transformations for the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012